机译:使用几何和纹理特征对焊缝射线照相图像进行多类缺陷检测和分类
2. MFL signals and artificial neural networks applied to detection and classification of pipe weld defects[J] .A.A. Carvalho,J.M.A. Rebello,L.V.S. Sagrilo NDT & E international.2006,第8期机译:MFL信号和人工神经网络在管道焊缝缺陷检测和分类中的应用
3. Detection of Weld Position and Seam Tracking Based on Kalman Filtering of Weld Pool Images[J] .X.D. Gao,S.-J. Na Journal of Manufacturing Systems.2005,第1期机译:基于焊缝图像卡尔曼滤波的焊缝位置检测与焊缝跟踪
4. The Classification of Weld Seam Defects for Quantitative Analysis by means of Ultrasonic Testing[C] .Y Salchak,T Tverdokhlebova,S Sharavina International Conference on Modern Technologies for Non-Destructive Testing.2016机译:超声波检测分类焊缝缺陷的分类
5. Enhancement of root crack detection in friction stir welds using ultrasonic non-destructive testing and signal processing technique.[D] .Dizon, Kathleen. 2007机译:使用超声波无损检测和信号处理技术增强搅拌摩擦焊缝中的根部裂纹检测。
6. Investigation of Welds and Heat Affected Zones in Weld Surfacing Steel Plates Taking into Account the Bead Sequence[O] .Miloš Mičian,Jerzy Winczek,Marek Gucwa,2020机译:考虑珠子序列的焊缝焊接钢板焊缝和热影响区的研究
7. Impression creep testing for evaluation of grade 22 ex-service hot reheat piping seam weld[O] .A. Bridges,J. Shingledecker,J. Siefert,2018机译:评估22级EX-Service热再热焊缝焊缝焊缝焊缝焊缝焊缝焊缝焊缝焊缝焊缝焊缝焊缝焊缝焊缝的印模蠕变试验
8. Investigation of Weld Joint Detection Capabilities of a Coaxial Weld Vision System[R] .Gangl, K. J.,Weeks, J. L. 1985机译:同轴焊缝视觉系统焊缝检测性能研究